
A 2D nGPT Model For Arc Prize

Jean-Francois Puget, NVIDIA

November 2024

Abstract

We present our solution to the ARC Prize 2024 competition on Kaggle.
Not only this solution is not on par with best solutions to the competi-
tion, but due to lack of time it was not possible to successfully submit it
to the competition. Yet, our solution may be of interest for three reasons:
it uses a tiny (42M parameters) transformer trained from scratch, it uses
an original task specific test time training, and it uses invertible transfor-
mations on logits. Our solution yields an accuracy of 17 percents on the
public evaluation dataset, which is surprisingly high for a tiny model.

1 Introduction

This short paper describes a model developed during last 3 weeks of the 2024
ARC Prize competition hosted on Kaggle [CKL+24]. Not only this model is
not competitive with best models for the competition, but due to lack of time it
was not possible to successfully submit it to the competition. Yet, our solution
may be of interest for three reasons:

• It a tiny 2D transformer trained from scratch for the competition,

• It uses an original task specific test time training scheme,

• It uses invertible transformations on logits.

Before describing the model and how it was trained let’s recap the competi-
tion. The description from Kaggle [CKL+24] reads:

Current AI systems can not generalize to new problems outside
their training data, despite extensive training on large datasets.
LLMs have brought AI to the mainstream for a large selection of
known tasks. However, progress towards Artificial General Intel-
ligence (AGI) has stalled. Improvements in AGI could enable AI
systems that think and invent alongside humans.

The Abstraction and Reasoning Corpus for Artificial General Intel-
ligence (ARC-AGI) benchmark measures an AI system’s ability to
efficiently learn new skills. Humans easily score 85 percents in ARC,

1



Figure 1: An ARC task.

whereas the best AI systems only score 34 percents. The ARC Prize
competition encourages researchers to explore ideas beyond LLMs,
which depend heavily on large datasets and struggle with novel prob-
lems.

We took the last sentence at face value and explored the use of a non LLM
transformer.

The competition is about learning how to solve graphical tasks like the one
in figure 1. For each task, a number of training examples are provided. For
each training sample we are given an input and a corresponding output. Inputs
and outputs are colored grids of dimension up to 30x30. There are 10 colors.
For each task a number of test samples are also provided, but for these ones we
can only access the input part. The output of test samples is kept hidden and
is used to score submissions to the competition.

The problem is to compute the output of the test samples based on the
transformation that was used in the training samples. For instance, in the task
of figure 1, the output is obtained by replacing each non black cell of the input
by a copy of the full input.

A solution to the competition is a computer program that can, for each task:

• read the training samples,

• infer the transformation that produces the output from the input,

• read the test samples, and apply the transformation to their inputs to
produce their output

During the competition we have to submit such program, in the form of a
Jupyter notebook. Kaggle then runs the notebook against a hidden set of 100
tasks and reports the percentage of test task that were correctly solved.

The standard way to build a solution in Kaggle is to train or fine tune
models offline, then uses these models in an inference pipeline in the submitted
notebook.

ARC Prize challenge is unusual because the above does not work at all.
The hidden test tasks are different from all the public tasks, and using models
pretrained on public tasks isn’t effective. To perform well one has to use some
form of training on the hidden test set (test time training or TTT). TTT was
used by the winners of a similar challenge run last year [CO23]

2



Figure 2: A constant size task.

About two thirds of the ARC tasks have constant size grids. In these tasks,
the size of the output is always the same as the size of the input. Figure 2 shows
one such task.

We decided to focus on solving constant size tasks. It remains to be seen if
our method can be adapted to tasks where output size differs from input size.

We will now describe the base model, how we modified it to enable task spe-
cific training, how we trained it offline, and how we used TTT on the evaluation
data.

2 A 2D nGPT Model for Constant Size Tasks

We use a transformer that takes as input a grid, and outputs a grid of same
size. This transformer is similar to LLMs, GPT2 in particular, except it works
with 2D grids rather than 1D sequences. Tokens are replaced by grid cell color
indices. There are 10 colors in ARC tasks, plus an 11th color for padding grids
to the same dimension when batching.

The architecture is the same as a LLM:

• an embedding layer that turns color indices into vectors,

• a number of attention + feed forward layers,

• a decoding layer producing color logits.

The difference with LLMs is in the attention layers. The attention layers
are 2D attention. A grid cell attends to all cells in same row, and it attends
to all cell in same column. Each of these attention is a 1D attention and is
implemented using pytorch masked scaled dot product attention. Padded areas
are masked. We also use rotary positional embeddings (ROPE) on each row
and on each columns, reusing the ROPE implementation for 1D sequence.

We also implemented a single attention where every grid cell can attend every
other grid cell, with a bias that depends on the distance between cells. We were
expecting to improve over the line by line attention. It was the opposite! Maybe
we did it wrong, and this is worth revisiting in the future.

There are many variants of transformers we could have started from. We
used the recently published normalized transformer (nGPT) from NVIDIA [LHSG24]
as it can be trained with less data than non normalized transformers. Given

3



the original implementation was not publicly available yet we used Phil Wang’s
nGPT-pytorch [Wan24].

To summarize, we took Phil Wang’s nGPT implementation, and replaced
the causal attention layer with two non causal, masked, attention layers, one
for rows, and one for columns. We used 12 layers with an embedding size (and
hidden size for all layers) of 512, resulting in a model with 42.5M trainable
parameters.

Tuning the size and number of layers would certainly be useful. Larger
models in particular seem possible as our code takes about 2 hours on Kaggle
to run TTT on 100 tasks. This is 6 times less than the allowed compute time
on Kaggle.

Our code is available at https://github.com/jfpuget/ARC-AGI-Challenge-
2024 .

3 Task Specific Modeling

Training the model on the public train tasks would not work well for at least
two reasons:

• First, there are only 262 constant size tasks, and about 1000 input/output
pairs. This is too little data to train any decent size transformer.

• Second, the transformation that maps input to output is task dependent.
It could be that the same input yields two different outputs in two different
tasks. A single model would not be able to do that.

We discuss how we addressed the first issue in the next section.
The second issue is more tricky. We tackled it by adding a task input to

the model. The model has an embedding layer that turns tasks ids into vectors
that are added to all color embeddings.

A refinement that proved to be useful was to decrease the rank of tasks
embeddings, forcing the model to distill task influence on a smaller manifold.
We used a smaller embedding size (e.g. 8) then have a linear layer that maps
task embedding to the hidden size (512) of the model. While using a small (8)
task embedding size decreased the performance of the model compared to using
full size (512), it yields better performance in TTT.

4 Invertible Transformations

We used two techniques to increase the size of the training data. First, We gen-
erated 10k input/output pairs for each training tasks by using Michael Hodel’s
re-arc generator [Hod24].

We trained a model using the resulting 2.6M pairs. And we used the original
tasks for validation. We got about 55 percents accuracy on the original tasks.

4



A second way to increase tasks is to use invertible transformations. For each
task, we could create another task by applying either a 2D symmetry (rota-
tion, transpose) or a color symmetry (permutation). There are 8 2D symmetry,
and, depending on the task up to 10 factorial relevant color permutations. Rel-
evant color permutations are permutations which actually modify the tasks.
Permuting colors that do not appear in the task is irrelevant. In practice we
used between 4 and 16 color permutations per task, and either 2 2D symmetry
(transpose or not) or all 8 2D symmetry.

If we use 8 2D symmetry and N color permutations, then we can train our
model with 262 times 8 times N tasks, with 10k pairs per tasks. This is about
335 million samples for N = 16. The model can be trained in about a day on a
8 A100 machine, using 1 epoch.

We can improve inference accuracy by combining the prediction for all tasks
derived from the same original task. Indeed, if a task T2 is derived from task
T1 by applying a symmetry S2 and a color permutation P2, then we can map
the prediction for T2 back to the original task T1 by applying the inverse of
symmetry S2 and the inverse of color permutation P2 to its prediction. We can
then use a majority vote to select the most common prediction for T1.

Majority vote is nice, but we can do much better. Indeed, it is possible to
map the logits of task T2 to the same space as logits of task T1 using the inverse
of S2 and P2. Then we average all logits before the final argmax decoding.

Merging logits moved accuracy on original tasks to about 80 percents. While
this result looks very encouraging, it is very optimistic as it requires a much
larger compute time than what is available on Kaggle.

It remained to be seen if we could even get something out of TTT.

5 TTT

TTT is about training the model when we submit it, i.e. on the hidden test
data. We can also evaluate its effectiveness using the public evaluation tasks.

The simplest way to perform TTT is to train the model from scratch on the
hidden test data (or on the public evaluation data). However, this is unlikely
to work as data is too small, even with symmetry and color permutation aug-
mentation. We can’t use Michael Hodel generator either as the hidden task are
unknown.

For those reasons it is much better to start from the model pretrained on
generated training data as in the previous section. However this model can’t be
used as is as it has trained embeddings for the training tasks. These embeddings
would not work for new tasks.

We therefore reinitialize the task embedding layer with random weights be-
fore peforming TTT. And while we reinitialize the task embedding layer we can
also change it size. Our experiments on evaluation data show that a 8 wide
task embedding when pretraining is best followed by a 512 wide task embed-
ding for TTT. We experienced the classical double descent when trying TTT

5



Figure 3: Blue objects move down.

task embedding sizes ranging from 8 to 512, with a first optimum at 32, then a
degradation of accuracy, followed by an improvement till size 512.

Invertible transformations are key for TTT as well. We used them in two
ways. First, as for pretraining, we create additional tasks by applying symmetry
and/or color permutations. The issue is that each task has a rather small number
of pairs, which is a problem.

We switched to a second way where we merge all derived tasks. For a given
original task, we add to it all pairs we could get from symmetry and color
permutations. The difference with the previous method is that there is a single
task embedding for an original task and all its derived tasks. This increases the
number of pairs per task, which is good. But it also is detrimental when color
or orientation matters.

For instance, in the task of figure 2 above, holes are filled with yellow. If we
apply color permutations, then we could get pairs where holes are colored with,
say, cyan. This prevents the model from learning which color has to be used
for filling holes. Similarly, there are tasks where objects are moved in a specific
direction. For instance in figure 3, the blue objects are moved down. Rotating
the grid makes it impossible for the model to learn to move things down. In
those cases the tasks are blurred by the symmetry or the color permutation.

Fortunately, when we merge derived tasks, the increase in pairs per task
offsets the effect of task blurring.

Our first idea for TTT was to freeze all weights except the task embedding
layer before training. Alas, it did not work at all. We hypothesize that our
model is not elaborate enough to capture task independent solving patterns.
Retraining the full model with new task embeddings was the way to go.

As we ran short of time we did not experiment much (TTT was working only
the day before last in the competition), but we noticed that if we trained on 100
evaluation tasks at a time, then we got better results than training on 400 tasks
at a time. With 100 tasks at a time we could get an accuracy of 26 percents on
the constant size test pairs of the evaluation data. Following that logic it could
be that performing TTT task per task would have been even better.

We could submit the TTT code only the last afternoon of the competition
and it failed. This happens a lot on Kaggle. Usually we use few days to make
sure the submission code is robust and doesn’t fail. We did not have that luxury

6



here because we did not work fast enough and the competition deadline hit us!
As a result we cannot report figures on the hidden test data. If we assume

performance is similar to the of evaluation data, then we can estimate that at
best our model would yield 26 percents of constant size test tasks, i.e. about 17
percents of all tasks. This is far less than LLM methods. At the same time it
is surprisingly high for 42.5M parameter model trained from scratch.

Note that TTT validation score is quite variable. Seemingly small changes
can result in a large variation in accuracy (accuracy ranged from 15 to 26 per-
cents in our case). This is probably due to the small amount of data we deal
with. Large variability is bad in general, but it can be a good thing in a chal-
lenge with a fixed hidden test set if one can submit enough time to hit the lucky
region.

6 Conclusion

We described how to use a tiny 42M parameters transformer to predict output
grid in the ARC competition. The model is able to learn from few samples
thanks to two key items: it uses a task specific embedding, and it uses symme-
try augmentation in both training and inference. Using testing time training it
could reach 26 percent accuracy on the constant size evaluation tasks. Unfortu-
nately we lacked time to make our hidden test submission work. An optimistic
performance estimate is of 17 on the hidden test, which is both way below LLM
based methods, but surprisingly high for a 42M model trained from scratch.

Besides making it work in kaggle submissions, there is a lot we could explore
from where we are. For instance, train larger models. Or study where the model
works well and where it doesn’t. Maybe there is a pattern that can be used to
restrict the model use to where it works, to be included in a model ensemble.

7 Acknowledgements

We want to thank the competition hosts, Francois Chollet in particular, for
designing a very rich and challenging benchmark. Our solution would not exist
without Michael Hodel data generator. It would not exist either without Phil
Wang (lucidrain) nGPT implementation. Special thanks to Marie Hermance,
Ivan Sorokin, and Heng Cherkeng for encouragements to write this paper, and to
Guillermo Barbadillo for insightful feedback on an earlier version of this paper.

References

[CKL+24] Francois Chollet, Mike Knoop, Bryan Landers, Greg Kamradt, Han-
sueli Jud, Walter Reade, and Addison Howard. Arc prize 2024.
https://kaggle.com/competitions/arc-prize-2024, 2024.

7



[CO23] Jack Cole and Mohamed Osman. Dataset-induced meta-
learning (and other tricks): Improving model efficiency on arc.
https://lab42.global/community-model-efficiency/, 2023. Accessed:
October 23th, 2024.

[Hod24] Michael Hodel. Re-arc: Reverse-engineering the abstraction and rea-
soning corpus. https://github.com/michaelhodel/re-arc, 2024. Ac-
cessed: October 23th, 2024.

[LHSG24] Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg.
ngpt: Normalized transformer with representation learning on the
hypersphere. https://arxiv.org/pdf/2410.01131, 2024.

[Wan24] Phil Wang. ngpt-pytorch. https://github.com/lucidrains/nGPT-
pytorch, 2024. Accessed: October 23th, 2024.

8


