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Abstract

Program synthesis methods aim to automatically generate programs restricted to
a language that can explain a given specification of input-output pairs. While
purely symbolic approaches suffer from a combinatorial search space, recent
methods leverage neural networks to learn distributions over program structures to
narrow this search space significantly, enabling more efficient search. However,
for challenging problems, it remains difficult to train models to perform program
synthesis in one shot, making test-time search essential. Most neural methods
lack structured search mechanisms during inference, relying instead on stochastic
sampling or gradient updates, which can be inefficient. In this work, we propose
the Latent Program Network (LPN), a general algorithm for program induction
that learns a distribution over latent programs in a continuous space, enabling
efficient search and test-time adaptation. We explore how to train these networks
to optimize for test-time computation and demonstrate the use of gradient-based
search both during training and at test time. We evaluate LPN on ARC-AGI, a
program synthesis benchmark that evaluates performance by generalizing programs
to new inputs rather than explaining the underlying specification. We show that
LPN can generalize beyond its training distribution and adapt to unseen tasks
by utilizing test-time computation, outperforming algorithms without test-time
adaptation mechanisms.

1 Introduction

Program synthesis aims to automatically generate programs that satisfy a given specification, typically
as input-output examples [Summers, 1977, Biermann, 1978]. Although symbolic approaches have
shown success in limited domains [Gulwani, 2011, Albarghouthi et al., 2013, Osera and Zdancewic,
2015, Feser et al., 2015, Frankle et al., 2016], they fail to scale to modern challenges involving large
search spaces and complex patterns like in ARC-AGI [Chollet, 2019, Chollet et al., 2024]. To handle
the complexity and exponential search space of such difficult problems, neural approaches have
emerged that aim to learn algorithms and programs from data [Graves, 2014, Kurach et al., 2015, Reed
and De Freitas, 2015, Zaremba et al., 2016, Gaunt et al., 2016, Bunel et al., 2016, Bošnjak et al., 2017].
Such methods are required as they can significantly narrow down the programmatic search space by
leveraging biases learned through training, enabling more efficient search. Large language models
(LLMs) have emerged as a particularly strong architecture for program synthesis tasks, with language
pre-training helping to narrow the search space before any further problem-specific fine-tuning is
performed [Austin et al., 2021]. This can be particularly useful if generating problem-specific data is
too expensive or limited. However, models trained on a specific program distribution will likely only
generalize to problems close to this distribution and perform poorly on problems such as ARC-AGI,
which are specifically designed to be out of distribution for LLMs [Gendron et al., 2023]. Such
generative neural methods lack mechanisms for systematic search at test time, with models usually
resorting to stochastic sampling [Chen et al., 2021] or heuristic search [Zhang et al., 2023]. Hottung
et al. [2021b], Li et al. [2024a] and the ARC Prize 2024 leading team MindsAI explore fine-tuning a
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model on a test task. However, such fine-tuning is computationally expensive and highly prone to
overfitting. This requires creating synthetic datasets on the fly, making fine-tuning a less scalable
approach.

To address these limitations, we introduce a general and scalable algorithm, Latent Program Network
(LPN), to perform program induction learning [Sun et al., 2018]. LPN builds a mechanism for
test-time adaptation directly into the neural architecture, without the need for parameter updates,
and utilizes a training objective suitable to test-time search. To perform adaptation, LPN leverages
a continuous latent space to model a wide range of potential programs, which a neural decoder
can then use to execute that program on a specific input. Note that our decoder directly generates
outputs pixel by pixel instead of writing Python code that would execute the task. Contrary to
most existing works, we train the neural architecture from scratch, as opposed to building on top
of large-scale models such as LLMs. Instead, our goal is to generalize purely through a test-time
adaptation mechanism, with as few priors as possible. Our key innovation is the ability to search
through a structured latent space during both training and inference, enabling efficient adaptation
at test time. We leverage gradient-based optimization in this latent space to find the latent program
that best explains the given specification. This latent program can then be executed on new inputs
to generate their corresponding outputs. Since this space is a highly compressed representation
of input-output pairs, we can perform gradient ascent in this space without encountering potential
overfitting that parameter-based fine-tuning methods face and therefore we do not require synthetic
expansion. Our training objective ensures that we learn a structured latent space that is smooth and
performs well with gradient-based optimization, allowing for more efficient program discovery. First,
to assess the benefits of our latent-search architecture, we evaluate it on a simple subset of ARC-type
programs. Second, we benchmark on ARC-AGI, a difficult program synthesis problem with a public
train and evaluation set and hidden test set. In this work, we specifically choose to not enhance our
results by using additional synthetic datasets, human or LLM generated, as we believe it is in the
spirit of the ARC-AGI competition to only use priors from the training set. Specifically, we only
use re-arc [Hodel, 2024] to generate input-output pairs that follow the programs of the training set.
By training only on train set problems, we ensure no possibility of data leakage from the evaluation
dataset, which likely occurs in methods leveraging pre-trained LLMs or LLM-generated programs [Li
et al., 2024a].

Our works’ main contributions are:

1. We introduce Latent Program Network (LPN) which directly builds in test time adaption
into the architecture by learning a latent space representing the space of possible programs,
enabling test time adaption of an output decoder by moving in this latent space. We train this
with a novel training objective for learning the latent space that prevents encoding the output
directly into the latent space. Instead, we encode an input-output pair to the latent space but
train this representation to decode the output of a different input-output pair, which prevents
the latent space from representing the output space instead of the program space.

2. We demonstrate that gradient-based search on the given specification in the latent space
significantly improves the performance of LPN at test time compared to performance without
latent search.

3. We show that adding gradient-based latent search during training enables the latent space
itself to be trained such that gradient optimization in the space works well, resulting in
significant improvement in sample efficiency.

4. We do not make use of any pre-trained models or LLM / human-generated synthetic data
when evaluating our work in the ARC domain, aside from generating input-output pairs
using re-arc [Hodel, 2024] based on the training set. This makes our method highly
scalable and could be quickly applied to a different domain without requiring a domain-
specific language, synthetic data, or pre-trained model. LPN can be applied to any problem
for which a large enough number of input-output pairs from a given set of programs is
available. In our current setting, we do not even apply enough compute during training to
observe convergence indicating that improved results on ARC-AGI could be found simply
by scaling training compute resources/parameter counts.

5. Our work directly refutes recent claims [Li et al., 2024b] that vision transformer architec-
tures [Dosovitskiy, 2020] struggle to solve individual arc problems. We show this is not a
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bottleneck in making progress on ARC-AGI using purely neural approaches that predict
outputs pixel by pixel.

2 Related Work

Early approaches to program synthesis focused on fully symbolic methods for LISP program con-
struction, such as Summers [1977], Biermann [1978], which aimed to infer LISP programs from
examples using symbolic reasoning. Such approaches were extended to domains such as string
programming [Gulwani, 2011] with applications to Microsoft Excel spreadsheets. However, these
methods were limited in their scalability and adaptability to more complex domains, often relying on
enumerative search with domain-specific heuristics to reduce the search space [Albarghouthi et al.,
2013, Osera and Zdancewic, 2015]. With the advent and successes of Deep Learning [LeCun et al.,
2015], there has been a trend to either train fully end-to-end neural networks for program synthesis
or combine neural networks with symbolic methods. Neural programmers-interpreters [Reed and
De Freitas, 2015] proposed a full end-to-end recurrent neural network approach. They found that
such architecture could learn 21 different programs using the same core inference module, inferring
programs to execute at test time. Our model extends such approaches by learning a latent program
representation instead of learning only a fixed discrete set of programs. We also do not require
program IDs during training, which are inferred by our encoder during training. A popular neuro-
symbolic approach called DreamCoder [Ellis et al., 2021] tackles the limitations of a domain-specific
language (DSL) by building up a library of useful programs that can be reused progressively making
search more efficient by being able to search over higher-level programs. LPN works by predicting
outputs from specifications via the latent space, and is therefore distinct from methods leveraging
DSLs to synthesize programs that map inputs to outputs. By directly predicting outputs, LPN does
not restrict the types of programs we can execute, which is a consequence of using a DSL.

Recently, much of the work in neural program synthesis has shifted toward leveraging pre-trained
large language models (LLM). These approaches are significantly different from ours in terms of
what priors come into the model since these LLMs are pre-trained on data that likely have non-zero
mutual information with program synthesis problems, allowing them to tighten any generalization
gap. This branch of approaches aims to improve generalization by reducing the required gap between
train and test, by expanding the dataset directly or via a pre-trained model. CodeIt [Butt et al.,
2024] iteratively samples programs from a pre-trained CodeT5 [Wang et al., 2023] model, performs
hindsight relabeling, and then fine-tunes the model, helping tackle the sparsity of rewards in program
synthesis. Kim et al. [2024] create ARCLE an environment consisting of fixed actions according to
core knowledge priors in which Reinforcement Learning can be performed. This is not as scalable and
relies on human-extracted primitives for training and restricts the space of possible programs that can
be executed to solve ARC tasks. Gendron et al. [2023] investigate the zero-shot performance of LLMs
on various reasoning tasks, including ARC-AGI, showing limited but non-zero performance without
fine-tuning, which suggests some degree of generalization. Mitchell et al. [2023] report comparable
findings on Concept-ARC [Moskvichev et al., 2023]. Li et al. [2024a] investigate distinct induction
and transduction methods using LLM-based synthetic datasets for training. However, following a
trend with ARC-based research, they evaluate on the public evaluation dataset instead of the hidden
test dataset. Since they leverage synthetic LLM-based programs and human-crafted prompts, there is
a strong possibility for data leakage. LPN is classified as an induction-based approach since it tries to
find a latent program that explains each of the input-output pairs in the specification to then predict
the test input.

A training approach that is most similar to LPN is Kolev et al. [2020], one of the few attempts to learn
ARC program synthesis end-to-end using a neural approach without a DSL or pre-trained language
models. They use an autoencoder to learn grid embeddings, embedding the entire instruction set in
one step to predict the output grid directly using a transformer [Vaswani et al., 2017] architecture, also
making use of spectral norm regularization [Yoshida and Miyato, 2017]. There are still significant
differences in architecture as they do not learn a latent space of programs that can then be used for
search, instead opting to directly predict the output from the specification. Such approaches do not
leverage test-time adaptation, likely struggle to generalize across varying specification sizes, and
require careful architectures to be permutation invariant neither of which are problems present in the
LPN architecture.
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While pre-trained models may solve some problems either in one shot or with minimal sampling,
certain solutions are highly unlikely to be generated by the model, and no amount of search or
sampling will uncover them within a reasonable time. Fine-tuning [Hottung et al., 2021b, Hübotter
et al., 2024, Li et al., 2024a] for a new problem is one way to break out of this, but it is very expensive
and inefficient to perform on large models. A branch of work that has the potential to overcome
some of these challenges is conditioning models on a latent space, where moving through the latent
space impacts the distribution of outputs predicted by the decoder. Most of the existing work in this
field with the strongest similarities to our work does not investigate the task of program synthesis.
Gómez-Bombarelli et al. [2018] investigate latent space optimization for molecule generation, and on
the Traveling Salesman Problem Hottung et al. [2021a] show that learning a latent space can be more
sample-efficient than simply sampling from a standard transformer model. Compass [Chalumeau
et al., 2023] leverage a latent space in online Reinforcement Learning applied to combinatorial
optimization, using the Poppy objective [Grinsztajn et al., 2022] to encourage diversity of the latent
space. This idea has also been explored in black-box optimization [Yu et al., 2024] to increase
the diversity of input design modes, levering an energy-based model to search the latent space. In
symbolic mathematics, latent space optimization has been used to find an equation that best explains
the data, balancing a trade-off between low complexity and high accuracy [Meidani et al., 2023].
In program synthesis, similar concepts have been explored, such as in Hong et al. [2021], which
focuses on discrete representations of programs for string transformation tasks, by training an auto-
encoder [Hinton and Salakhutdinov, 2006] on the full specification. However, they do not leverage
gradient search in the latent space at test time but instead use beam search [Furcy and Koenig, 2005]
and simply train the model to find a program in the DSL that can explain the specification instead
of generalizing to a new input. Policy sketches [Murali et al., 2017, Nye et al., 2019] can also be
seen as learning a discrete latent space which is then more compressed and therefore potentially
more efficient to search. However, while discrete spaces can be useful for interpretability and
potentially compositional generalization [Shi et al., 2023], they still suffer from the drawback that
they are harder to search relative to smooth continuous latent spaces that can leverage a gradient
signal [Bartunov et al., 2020]. LEAPS [Trivedi et al., 2021] learn a latent space over programs for
the Karel domain [Pattis, 1994], and then use gradient-free optimization to search this space for
high-performing programs, however, Carvalho et al. [2024] show this method is outperformed by hill
climbing in the programmatic space.

3 Background

Program Synthesis aims to generate deterministic programs in a target language, such that outputs
generated from inputs are consistent with the given specification. Typically, the problem space Y
consists of programs formulated within a domain-specific language (DSL). Each task is defined by a
specification set X , where each specification, Xm ∈ X , is described by a set of input/output (I/O)
examples:

Xm = {(xm
1 , ym1 ), . . . , (xm

n , ymn )} (1)

A program f ∈ Y is considered to solve the task associated with Xm if it satisfies:

∀j ∈ [1, n], f(xm
j ) = ymj (2)

This definition requires that the program exactly replicates the output for each input in its specification.
We denote Fm to represent the true function that generates the input-output pairs.

Program Synthesis Generalization. In this work, we consider the problem where we are given a
specification set of input-output examples generated by a program Fm (not necessarily constrained to
a DSL), along with an additional input xm

n+1:

Pm = {(xm
1 , ym1 ), . . . , (xm

n , ymn ), xm
n+1}. (3)

The goal is not to be able to explain the specification, but to apply the program shown in the specifi-
cation to a new input example xm

n+1, demonstrating generalization. This can be done via induction
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or transduction [Li et al., 2024a]. If we do not limit the Kolmogorov complexity of programs [Kol-
mogorov, 1965, Solomonoff, 1964], we can find an explanation for any given specification whether
or not it corresponds to the true program that underlies the specification. Evaluating generalization
performance tests not only the ability to explain a specification but also to successfully infer the
underlying program in its generality and apply it to a new input. This problem bears a resemblance to
few-shot learning with the difference of having only one task. A recent problem posed in the Artificial
Intelligence research community that falls under this formulation is the ARC dataset [Chollet, 2019]
that contains programs on 2D grids of 30x30 cells that can take any 10 colors.

Variational Auto-Encoders (VAEs) [Kingma, 2013] provide a framework for approximate
Bayesian inference. Given i.i.d. samples x from a dataset, the goal is to estimate the posterior
p(z|x), where z represents a latent variable. Since directly computing this posterior is generally
intractable, the evidence lower bound (ELBO) is introduced to approximate it. In this approach, a
parameterized encoder qϕ(z|x) is used to approximate the true posterior distribution.

The ELBO can be formulated as follows:

log p(x) ≥ Ez∼qϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)), (4)

where the first term captures the likelihood of reconstructing x from the latent variable z, and
the second term is a Kullback-Leibler divergence that regularizes qϕ(z|x) to be close to the prior
distribution p(z).

4 Latent Program Network

Decoder

Latent Optimization

Decoder
Encoder

Figure 1: Inference of the Latent Program Network (LPN) model. (Left): the encoder maps I/O pairs
to a latent space of encoded programs. (Middle): the latent program is refined during an optimization
process to best explain the given I/O pairs. (Right): the decoder executes the latent program to
generate the desired output to a newly given input. The latent optimization figure in the middle comes
from the experiment described in the appendix, figure 16.

We propose the Latent Program Network (LPN), an algorithm that trains a neural network end to
end to take a specification of input-output pairs and generate the output of a newly given input. With
a focus on abstraction, search, and synthesis, LPN is designed with the ability to perform test-time
adaptation explicitly built into the architecture. LPN is composed of three components (see figure 1):
(1) a neural network encoder that takes in a specification Xm and outputs an abstracted latent program,
(2) an optimization process that refines the latent to best explain the data, (3) a decoder neural network
that executes the latent program to generate an output.

Prior work has focused on directly training models to maximize the likelihood of decoding the correct
output given a specification [Kolev et al., 2020]. However, we diverge from such transduction-based
methods, which condition on all input-output pairs in the specification to predict an output, as these
approaches face challenges when scaling to specifications of different sizes and generalizing to unseen
tasks. They also offer no inherent ability to adapt at test time. Instead, by explicitly factorizing our
system into abstraction generation, latent program synthesis, and output prediction, we aim to build
an induction machine that can utilize test-time computation to adapt to unseen instances.

5



4.1 Latent Program Inference

The encoder and decoder play similar roles as in a VAE, while the latent optimization process attempts
to solve a dynamic optimization problem. Unlike VAEs, we can utilize our encoder at test time as a
starting point for latent program search, which we find crucial for performance.

Encoder: The probabilistic encoder is trained to approximate the Bayesian posterior over programs.
Specifically, it maps an input-output pair (x, y) to a distribution in the latent space qϕ(z|x, y),
representing possible programs that could explain the given input-output mapping. Using a variational
approach is important because, for any given input-output pair, there exists a broad range of possible
programs that map the input to the output, even when restricting to e.g. programs of low Kolmogorov
complexity [Solomonoff, 1964, Kolmogorov, 1965]. Intuitively, the encoder is trained to learn an
abstract representation of programs in a continuous latent space, by implicitly encoding input-output
pair examples. In practice, we use a multivariate normal distribution whose mean µ and diagonal
covariance Σ parameters are inferred by the encoder. To take advantage of hardware parallelization,
the encoder can process all the I/O pairs in a given specification in parallel. It should be noted that
LPN is permutation invariant to the specification order by encoding each pair independently, contrary
to a naive sequence model over the concatenation of I/O pairs.

Figure 2: Conditioning the decoder on differ-
ent points of the latent space leads to different
outputs being generated. Experiment detailed
in figure 16.

Decoder: The probabilistic decoder is responsible
for mapping a latent program and an input to the
space of outputs, directly predicting the output pixel
by pixel instead of via a DSL. It models the distri-
bution of possible outputs y given an input x and a
latent z. Note that even if the underlying I/O map-
pings are deterministic, we still use a probabilistic
decoding framework pθ(y|x, z) to be compatible with
maximum likelihood learning. Figure 2 shows the
decoder generating different outputs by keeping the
input fixed but varying the latent program, which in
this figure represents a specific grid pattern to repro-
duce. In a real task, the aim of this encoder-decoder
system is to learn a compressed representation of the
space of possible programs we care about (e.g. in
the case of ARC-AGI, this would correspond to pro-
grams that use the Core Knowledge priors [Chollet,
2019]).

Latent Optimization: The encoder is trained to
approximate the posterior over programs and may not encode the right abstraction given an I/O pair.
Especially if the task is very novel, the encoder may fail at producing the right latent program, which,
fed to the decoder, would generate the wrong output. Therefore, we include a middle stage of latent
optimization where, starting from the encoder’s prediction z, we search for a better latent program
z′, one that would better explain the observed data according to the decoder pθ. The search process
is generally denoted z′ = f(pθ, z, x, y) and can be implemented in several ways (c.f. section 4.2).
Analogous to system 1/system 2 thinking [Kahneman, 2011], we can think of the encoder generating
an intuitive first guess as to what the observed program may be (system 1), and the latent optimization
process executing a search for hypotheses that would better explain the observations (system 2).

Encoder

z ∼ qϕ(z|x, y)
Latent Optimization

z′ = f(pθ, z, x, y)

Decoder

ŷ ∼ pθ(y|x, z′)
(5)

4.2 Search Methods for Latent Optimization

Given n input-output pairs {(xi, yi)}i=1...n, the search process z′ = f(pθ, z, x, y) attempts to find a
z′ that satisfies:

z′ ∈ argmax
z

n∑
i=1

log pθ(yi|xi, z) (6)
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This means we search for the latent that would most likely make the decoder generate the right outputs
given the corresponding inputs. By finding a latent that can explain all the input-output pairs, the
latent solution to the optimization problem is more likely to generalize to a new input-output pair. We
describe here two instantiations of the search process, namely a random search and a gradient ascent
algorithm, both acting in the latent space of programs. We leave for future work the exploration of
other search methods like evolutionary strategies [Hansen and Ostermeier, 2001, Chalumeau et al.,
2023] that could better trade-off exploration and exploitation of the latent space.

Random Search An initial version of the latent search process is to sample some latents from
either the prior distribution p(z) or around the approximate Bayesian posterior qϕ(z|xi, yi) and select
the latent that gives the highest log likelihood of the input-output pairs according to the decoder.

∀k ∈ [1,K], zk ∼ p(z) z′ ∈ argmax
zk

n∑
i=1

log pθ(yi|xi, zk) (7)

Random search asymptotically converges to the true maximum likelihood latent (equation 6) and can
prove useful when the function to optimize (here, the decoder log-likelihood) is not differentiable or
smooth. However, the efficiency of random search decreases exponentially with the dimension of the
latent space, which makes it impractical for most applications.

Algorithm 1 LPN Test-Time Inference with Gradient Ascent
Latent Optimization

1: Input: n input-output pairs (xi, yi), a test input xn+1,
the number of gradient steps K

2: for i = 1, . . . , n do ▷ Can be done in parallel
3: Sample zi ∼ qϕ(z|xi, yi)
4: end for
5: Initialize latent z′ = 1

n

∑n
i=1 zi

6: for k = 1, . . . ,K do ▷ Perform gradient ascent
7: z′ = z′ + α · ∇z

∑n
i=1 log pθ(yi|xi, z)|z=z′

8: end for
9: Generate output: yn+1 ∼ pθ(y|xn+1, z

′)
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Figure 3: Gradient field of the decoder
log-likelihood f(z) = log pθ(y|x, z)

Gradient Ascent Since the decoder is a differentiable neural network, its log-likelihood
log pθ(y|x, z) is also differentiable with respect to z and one can use first-order methods like gradient-
ascent to efficiently search through the latent space for a solution to the latent optimization problem
(equation 6). Figure 3 shows the gradient field and the landscape of the decoder log-likelihood of a
2D latent space and displays how gradient-ascent can be performed to find a local optimum in the
latent space. This visualization highlights that only a small portion of the latent space can explain
all the input-output pairs, corresponding to high decoding likelihood. Notably, poor initialization
can lead the search to converge to different local minima, highlighting the importance of amortized
inference from the encoder.

z′0 =
1

n

n∑
i=1

zi ∀k ∈ [1,K], z′k = z′k−1 + α · ∇z

n∑
i=1

log pθ(yi|xi, z)|z=z′
k−1

(8)

The series (zk)k∈[1,K] should exhibit increasing decoding likelihood if the step size α is small enough.
In practice, we generate the output with the best latent found during the gradient ascent algorithm,
which may not always be the one that is obtained after taking the last gradient step (zK).

4.3 Training

To train the LPN system end-to-end, we assume to have a dataset of tasks, where a task is defined
as n input-output pairs (xi, yi) generated by the same program. To simulate the test conditions of
predicting a new input from a given specification, we design the training procedure to reconstruct
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each of the outputs yi from their inputs xi and all the n−1 other pairs (xj , yj)j ̸=i. We emphasize that
we do not use the specific pair (xi, yi) to reconstruct yi, which would otherwise lead to the encoder
directly compressing the output yi as a shortcut without learning program-related abstractions.

When reconstructing output yi, we first sample latents zj from the encoder qϕ(z|xj , yj) for all j ̸= i.
We then aggregate them by computing their mean 1

n−1

∑
j ̸=i zj , then we perform latent optimization

using e.g. gradient ascent to obtain z′i. Finally, we compute the negative log-likelihood of the right
output yi using its corresponding input xi and the refined latent z′i. In practice, we compute the cross-
entropy loss of the decoder logits pθ(ŷi|xi, z

′
i) and the labels yi, which derives from maximizing the

likelihood of a categorical distribution. The full training pipeline is detailed in algorithm 2.

Specifically, we compute the reconstruction loss Lrec and the KL loss LKL between the approximate
posterior and the prior:

Lrec(ϕ, θ) =

n∑
i=1

− log pθ(yi|xi, z
′
i) (9) LKL(ϕ) =

n∑
i=1

DKL (qϕ(z|xi, yi) ∥ N (0, I)) (10)

The dependence of the reconstruction loss Lrec(ϕ, θ) in ϕ arises from using the reparameterization
trick [Kingma, 2013] when sampling each latent zj . Indeed, we first sample a normal random
vector ϵj ∼ N (0, I), then we infer the mean µj and diagonal covariance Σj using the encoder and
recompose the latent zj = µj + ϵj · Σj . Then, z′i is used by the decoder to reconstruct the output.
Note that we can decide whether to let the decoder gradient flow through the latent update. Indeed,
it is more computationally efficient to stop the gradient through the update, by changing line 10 of
algorithm 2 with z′i = z′i + α · g′i, where g′i = ∇z

∑
j ̸=i log pθ(yj |xj , z)|z=z′

i
, with x notating a

stop-gradient on x.

We denote β the weighting factor that balances the reconstruction and KL terms [Burgess et al.,
2018], which gives the combined training objective:

Ltotal(ϕ, θ) = Lrec(ϕ, θ) + βLKL(ϕ) (11)

Algorithm 2 LPN Training with Gradient Ascent Latent Optimization

1: Input: encoder parameters ϕ, decoder parameters θ
2: for t = 1, . . . , num_training_steps do
3: Sample n input-output pairs (xi, yi) from the same program
4: for i = 1, . . . , n do ▷ Can be done in parallel
5: Sample zi ∼ qϕ(z|xi, yi) ▷ Using the reparameterization trick
6: end for
7: for i = 1, . . . , n do ▷ Can be done in parallel
8: z′i =

1
n−1

∑n
j=1
j ̸=i

zj

9: for k = 1 . . .K do ▷ Perform gradient ascent in the latent space
10: z′i = z′i + α · ∇z

∑n
j=1
j ̸=i

log pθ(yj |xj , z)|z=z′
i
▷ Optional stop-gradient on the update

11: end for
12: Li = − log pθ(yi|xi, z

′
i) + β ·DKL(qϕ(z|xi, yi) ∥ N (0, I))

13: end for
14: L = 1

n

∑n
i=1 Li ▷ Total loss for all pairs

15: Update ϕ and θ via gradient descent on L
16: end for

This training procedure offers some freedom on the latent optimization, i.e. how to compute z′i from
zi. Training with gradient ascent latent optimization (as detailed in algorithm 2) incurs a significant
compute overhead due to the costly latent gradient computation through the decoder. Therefore,
although we may use a high compute budget at test-time, we propose to use a small number of
gradient ascent steps during training, ranging from 0 to 5 steps. Specifically, we call mean training
when we train without latent optimization (i.e. 0 steps of gradient ascent), since in this case we use
the mean latent to make a prediction.
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5 ARC-AGI Experiments

In this work, we consider the ARC-AGI 2024 challenge [Chollet et al., 2024] as our testing domain for
the proposed method. It is a challenging program synthesis dataset that encompasses a wide variety
of unique tasks. Because very little training data is available (400 training tasks), the benchmark is
resistant to memorization and rather tests for adaptation and out-of-distribution generalization. As
justified in Chollet [2019], it is a benchmark that tests developer-aware generalization, which means
one possesses limited information regarding the test tasks. Indeed, developers attempting to solve
ARC-AGI cannot see the private test set but are given a set of Core Knowledge priors upon which
all tasks are built. Such priors include objectness, goal-directedness (agency), simple arithmetic
(numbers and counting), and basic geometry and topology.

5.1 LPN Architecture

3x4 3x4

Rows Columns

4x3 4x3

........

Rows Columns Rows ColumnsPadding tokens Padding tokens

Latent
Input Output

Rows Columns Padding tokensPadding tokens

Latent

Input Output

3 4 ... 3 4 ...

..
. 4 3 ... 4 3 ...

Encoder

Decoder
?

Figure 4: LPN architecture for ARC-AGI. Both the encoder and the decoder are small transformers
that take in flattened padded grids as inputs. The actual number of rows and columns are prefixed to
each sequence.

In all our experiments, programs are defined in the input-output space of ARC-AGI, i.e. 2D grids
whose cells can take 10 different values and shapes are (n,m) with n,m ∈ [1, 30]. To train a
high-performing latent space on such input-output pairs, it is critical to design an encoder that can
process both input and output grids to infer a distribution over possible programs and a decoder that
can execute a large number of programs on input grids.

We implement both the encoder and decoder as small transformers [Vaswani et al., 2017] specifically
designed for this benchmark, in contrast to the more general large language models (LLMs) typically
used [Wang et al., 2023]. By foregoing the transfer learning benefits of large pre-trained models,
we aim to investigate the effectiveness of learning programs in this narrow domain and evaluate the
potential of test-time latent search. The code used in this research is open source and available at
https://github.com/clement-bonnet/lpn. Our codebase is implemented in JAX [Bradbury
et al., 2018] and uses neural network building blocks from the Flax library [Heek et al., 2024].

We model the input and output images as 2D grids that we pad and flatten in a raster-scan fashion
to form sequences of pixel values each of size 30 ∗ 30 = 900 (see figure 4). We prefix each grid
sequence with shape information, namely 2 extra values for the number of rows and columns, leading
to sequences of 902 values.
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Encoder The encoder takes both the input and output grids from a given pair and returns a distribu-
tion of inferred program latents that underlie the task. More specifically, it returns the mean and the
diagonal covariance of a multivariate normal distribution from which one can sample. Each grid se-
quence contains 902 values, and we add an extra CLS token for the output embedding. Therefore, the
total sequence length of the encoder transformer is 1805. To process such sequences, we implement
the encoder as a standard transformer [Vaswani et al., 2017] with pre-layer normalization [Baevski
and Auli, 2019, Xiong et al., 2020] and multi-head attention. To account for spatial information, we
factorize positional embeddings to be of the following form: pe(i, j, c) = pr(i) + pc(j) + emb(c)
with i, j ∈ [1, 30], c ∈ {0, 1} the channel index (0 for input and 1 for output), pr are the row
embeddings, pc are the column embeddings. All embeddings are in RH with H being the embedding
size of the transformer. All 1800 color values between 0 and 9, the 4 shape values between 1 and
30, and the cls token are separately embedded into RH using look-up tables. We mask the padded
tokens given by the shape values and feed the sequence to multiple transformer blocks (more details
on the architecture hyper-parameters can be found in the appendix section A). The attention mask
is non-causal as all non-padded tokens can attend to all other non-padded tokens for the encoding
computation. The CLS embedding then goes through a layer-norm and two parallel dense layers
to output the mean and diagonal log-covariance of the multivariate normal distribution over latents.
Sampled program latents are of dimension d which may differ from H .

Decoder The decoder takes an input grid and a latent program and auto-regressively generates
an output grid. The decoder is designed similarly to the encoder with a few differences. First, it
prefixes the flattened sequence with (a projection of) the latent embedding. Then, because the decoder
auto-regressively generates the output, its attention mask is made causal on the second half of the
sequence, which is the output grid. The attention mask on the output sequence is also a function
of the predicted output shapes, dynamically masking padding tokens. The sequence embeddings
corresponding to the output are then extracted and projected to either shape logits for the first two
embeddings, or grid logits for the 900 other output grid embeddings. Note that an output token
embedding maps to logits for the next token in a raster-scan fashion. However, due to padding at
each line, we map the last embedding of each row to the first token of the next row instead.

5.2 Validating the Decoder

Training deep networks from scratch to solve ARC-like tasks has been challenging [Li et al., 2024b].
If it is true that such networks struggle even to learn to execute single programs, then this would
represent a significant bottleneck to models training from scratch on a broad distribution of programs.
Therefore, before training LPN end-to-end, we conclusively show that our decoder architecture does
not suffer from such a bottleneck, and is able to learn individual programs.

We take 5 of the 400 tasks from the ARC-AGI training set, and for each of these tasks, we train a small
LPN architecture of 800k parameters (except for the last task which required a bigger model with
8.7M parameters) on the corresponding task generator from re-arc [Hodel, 2024]. Specifically, we
select the first five tasks from the arc-agi_training_challenges json file (007bbfb7, 00d62c1b,
017c7c7b, 025d127b, 045e512c) shown in figure 5.

007bbfb7 00d62c1b
017c7c7b

025d127b
045e512c

Figure 5: Overfit training on the first 5 ARC-AGI training tasks. The captions correspond to task IDs.
For each task, the top row contains the input grids, and the bottom row the output grids. Each task
consists of observing all pairs but the first and inferring the output of the leftmost pair given its input.
Each curve corresponds to a separate training run.

We evaluate both the distribution of re-arc generated tasks on which it is trained and on the true task
from the ARC-AGI training set in figure 6. We show that for each task, the small LPN decoder-only
model successfully learns individual programs and manages to solve the corresponding ARC-AGI
task. Therefore, our model outperforms previously reported results in Li et al. [2024b], and concludes
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that our architecture does not suffer from a decoder bottleneck. Note that the encoder is not helpful in
this experiment since the task is always the same. Our later results on ARC-AGI section 5.6 take this
a step further and show that we can learn a single transformer architecture capable of executing over
180 programs in the ARC training dataset.
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(a) Training loss

Pixel Accuracy

Task re-arc ARC-AGI

007bbfb7 100 100

00d62c1b 96.5 100

017c7c7b 99.7 100

025d127b 100 100

045e512c 98.3 100

(b) Performance after 10k steps of training

Figure 6: Training loss and performance of LPN training on 5 of the re-arc distributions. For each
task, only samples from the re-arc generators are used for training. The corresponding ARC-AGI
tasks are never seen during training.

5.3 Pattern Task

The ARC-AGI challenge contains many diverse programs leveraging different knowledge priors.
Injecting these priors into LPN by training the model to master ARC-like tasks requires significant
compute resources when training from scratch, without an LLM-based initialization. Therefore,
to investigate the training dynamics and properties of LPN before such a large-scale training, we
develop a simpler task called Pattern task (see figure 7) within the same domain, but using a narrow
distribution of pattern-like programs. This specific task always generates fully-black 10x10 inputs
with a single blue pixel at a random location that defines where the output pastes a 4x4 pattern sampled
from a uniform distribution. The pattern is program-specific, which means it is the same across
different pairs but it varies from one specification to another. This task enables us to demonstrate how
deep learning methods may still make errors on such tasks without test-time computation. We later
extend this task to study an out-of-distribution setting in section 5.5.

Figure 7: Example of input (top row) and output (bottom row) pairs of a specification sampled from
the Pattern task. Each sample is a batch of 4 pairs that share the same pattern.

We compare a variety of training and inference methods in Table 1. We train 1M parameter models
with each method for 20k steps with a batch size of 128. Then, we evaluate each training mode with
different choices for latent optimization. Note that for all inference methods, we still only evaluate
performance with a budget of 1, any inference budget only happens in the latent space before making
a single output prediction. We repeat each experiment 3 times with different random seeds and report
the mean performance and standard variation in parentheses.
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Inference
Training Mean GA 1 GA 5 GA 20 GA 100 RS 250
Mean 3.2 (2.7) 3.6 (3.0) 18.8 (14.4) 52.5 (25.0) 67.5 (20.0) 3.2 (2.7)
GA 1 8.6 (4.4) 44.6 (10.9) 85.4 (7.6) 98.4 (1.4) 99.5 (0.5) 10.2 (5.3)
GA 1 (g) 0.6 (0.1) 13.7 (3.0) 60.2 (7.5) 88.9 (6.0) 94.1 (3.8) 0.7 (0.2)
GA 5 0.0 (0.0) 0.4 (0.3) 31.9 (11.2) 88.5 (11.9) 98.1 (2.1) 0.5 (0.4)
GA 5 (g) 0.0 (0.0) 0.0 (0.0) 9.9 (2.9) 87.1 (6.0) 95.1 (3.3) 0.0 (0.0)
RS 5 6.1 (4.4) 8.2 (6.5) 27.7 (21.6) 56.3 (27.5) 72.2 (21.2) 6.1 (4.4)
RS 25 10.8 (8.0) 13.3 (10.1) 39.9 (21.4) 72.3 (18.5) 87.9 (9.2) 10.8 (8.0)

Table 1: Ablation of different LPN training and inference methods on the Pattern task. For each
training method, training was done for 20k steps with 3 different seeds, and performance is aggregated
over the 3 runs with the standard deviation in parentheses. Methods with a (g) indicate that the
gradient over parameters flows through the latent gradient ascent (analog to meta-learning). Other
methods stop the parameter gradient during latent optimization. Two latent optimization methods
are compared. GA [N] stands for gradient ascent with N steps, RS [X] means random search with a
budget of X samples.
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Figure 8: Ablation on the initialization of latent optimization and the role of the encoder. Encoder
mean signifies that latent optimization is initialized using the encoder mean latents. GA 100 stands
for 100 steps of gradient ascent during latent optimization. The results demonstrate the importance of
using the encoder to find a good starting point before doing latent optimization.

The first result demonstrated on this relatively simple benchmark is that inference using mean latents
(no latent optimization) performs poorly across all training methods. This shows that inferring the
correct latent in one shot is challenging and that some form of latent program search is needed for
this task and model size. Then, we see that all training methods show increasing performance when
given more budget for latent optimization. Indeed, from using the encoder mean prediction to using 1
to 100 steps of gradient ascent, accuracy on the Pattern task keeps increasing, showing the ability
of LPN to utilize compute to adapt to a new task at test time. Also, we observe that training with 1
gradient ascent step of latent optimization shows higher returns than training with mean latents when
scaling the inference budget. With 100 steps of gradient ascent at inference time, mean training gets
an accuracy of 67.5% when training with one gradient step reaches 99.5%. This demonstrates the
benefits of training the latent space with the awareness that gradient ascent will be performed at test
time, an important inductive bias for the LPN architecture. Lastly, we observe that gradient ascent
vastly outperforms random search, validating that search without using the gradient signal is highly
inefficient.

In addition, we ablate the impact of initializing latent optimization with the encoder versus using the
prior. Specifically, we compare z ∼ p(z) and z ∼ qϕ(z|x, y). Figure 8 shows that initializing search
with the encoder is critical for performance across all training methods validating the intuition that
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LPN can perform fast system 1-like reasoning using the encoder and then narrow down the search
space during latent optimization, simulating system 2 reasoning.

5.4 Analyzing the Latent Space
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Figure 9: (Left) The 2D pattern task with inputs containing marker points where patterns should
be placed, with patterns varying for each different program. (Right) The latent traversal visualizes
the effect of traversing the latent space, on the predicted pattern by the decoder at marker points.
Visualization in higher resolution in fig. 17

To validate that the encoder is learning programs in its latent space, we design an even simpler
task with small 4x4 grids that have 2x2 patterns. We train an LPN model until convergence with
a latent space of dimension 2 to easily visualize it in figure 9. Due to the simplicity of the task
we train the model with mean training, i.e. no latent optimization. Because we are using a 2D
Gaussian prior for the latent space, we can convert R2 to the unit square using the normal cumulative
distribution function (CDF), and then plot on the unit square at coordinates (x, y) the decoder’s output
when conditioned by the latent z = (CDF(x),CDF(y)). These results demonstrate the diversity
and smoothness of the latent space, showing structure in terms of color patterns, which motivates
performing gradient ascent latent optimization in more complex tasks. This shows that the latent
space can encode a wide range of diversity in its latent space which is especially important for
adapting to unseen patterns.

5.5 Adapting Out-Of-Distribution

We study the out-of-distribution (OOD) behavior of different training methods in table 2. We use
the same Pattern task as in section 5.3 but with different levels of color density for the patterns
to reproduce. Specifically, we train on a density of 50% (which means half the patterns are black
cells), and evaluate on 50%, 75% (weakly OOD), and 100% (strongly OOD). We observe that LPN
equipped with gradient ascent at inference time can recover strong performance in the OOD setting
(88% accuracy) whereas the prediction from the mean latent essentially gets an accuracy of 0%.
Moreover, all methods suffer from a performance drop when increasing the OOD setting, but training
with gradient ascent gets the lowest drop in accuracy, demonstrating a latent space better behaved for
search at inference time. This motivates training LPN on some distribution of programs and then
using the model equipped with gradient ascent at inference time given a novel task.

5.6 ARC-AGI 2024

Data Generation To test LPN on the ARC-AGI benchmark, we design a training phase where we
aim at injecting the Core Knowledge priors into our LPN system. In this work, we use the re-arc
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Inference
Training Mean GA 10 GA 100
Mean 30.2 (15.7) 72.8 (29.5) 82.2 (21.3)
GA 1 26.6 (7.4) 98.0 (0.6) 99.2 (0.6)
GA 2 14.4 (3.5) 97.2 (1.6) 98.9 (1.2)
GA 3 1.0 (0.7) 85.7 (6.3) 98.3 (1.9)
GA 1 (g) 10.6 (6.4) 93.8 (5.1) 97.4 (1.9)

Training distribution

Inference
Training Mean GA 10 GA 100
Mean 7.6 (5.6) 51.3 (35.7) 62.8 (38.3)
GA 1 7.4 (4.4) 93.1 (4.3) 97.7 (2.2)
GA 2 3.0 (2.6) 86.1 (6.0) 95.9 (2.1)
GA 3 0.0 (0.0) 55.0 (7.8) 93.9 (3.8)
GA 1 (g) 1.3 (1.0) 81.7 (13.3) 91.5 (5.5)

Weakly out-of-distribution

Inference
Training Mean GA 10 GA 100
Mean 0.3 (0.5) 18.8 (14.5) 41.1 (29.6)
GA 1 0.0 (0.0) 59.9 (11.6) 88.0 (5.3)
GA 2 0.0 (0.0) 38.5 (13.0) 81.8 (10.9)
GA 3 0.0 (0.0) 11.3 (9.3) 72.0 (14.0)
GA 1 (g) 0.0 (0.0) 40.9 (19.8) 71.1 (14.3)

Strongly out-of-distribution

Table 2: Study of the out-of-distribution (OOD) performance on the Pattern task. Models are
trained on patterns that have a density of 50% (half black, half colored), then evaluated on the same
distribution, on a density of 75% (weakly OOD) and 100% (strongly OOD). Performance is averaged
over 3 training runs with different seeds, with standard deviation in parentheses.

generators from Hodel [2024] to generate as many input-output pairs as needed during training in an
online fashion. These 400 generators solely implement the programs from the ARC-AGI training set.
Being able to perfectly execute this set of 400 programs is a necessary yet not sufficient condition
for solving ARC-AGI. By limiting the training set to only the core knowledge priors shown in the
training dataset we ensure that there is no data leakage from other sources such as the evaluation
datasets. Therefore any performance on the evaluation set we demonstrate in this work is purely due
to generalization.
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Figure 10: Training LPN on the re-arc generators from the ARC-AGI training set. The run took 5
days on a TPU v3-8 without converging. (Left): training loss in log scale. (Right): top-2 accuracy
using mean inference mode (no latent optimization) on the 400 tasks from the ARC-AGI training set.

Training We train an LPN model of 39M parameters with a latent space of dimension 256, using
mean training, i.e. no latent optimization during training. We performed 220k training steps with
a batch size of 128 on a TPU v3-8, which took 5 days. We then fine-tuned the model for 2k steps
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using 1 step of gradient-ascent latent optimization. Figure 6 shows the training loss and the model’s
top-2 accuracy on the 400 tasks from the training set, using mean latents for inference (no latent
optimization). We note that training was stopped before convergence due to computational limits.

Inference Training (400 tasks) Evaluation (400 tasks) Test (100 tasks)
Mean 24.83 3.25 -
GA 1 33.21 3.50 -
GA 5 38.25 6.12 -
GA 25 42.58 5.87 -
GA 100 44.58 8.38 -
GA 200 43.88 9.88 3.00
GA 300 46.13 9.38 -
GA 400 46.00 9.50 -

Table 3: Performance after 220k training steps (5 days on a TPU v3-8). Top-2 accuracy on the
different sets, results are given in percentages. The Test results correspond to the leaderboard score,
i.e. performance on the private test set. GA N stands for gradient ascent with N gradient steps, used
for latent optimization.

Results We analyze scaling test-time latent optimization in table 3. For gradient ascent latent
optimization we used the Adam [Kingma and Ba, 2017] optimizer with β1 = β2 = 0.9 and a cosine
decay learning rate schedule starting at a learning rate of 1.0. Here as well, we observe performance
increasing as we scale the number of gradient ascent steps performed in the latent space at test time,
with convergence occurring around 400 steps. On the training dataset, gradient ascent nearly doubles
the top-2 accuracy from 24.83% to 46.13% with 300 gradient steps, representing over 184 distinct
programs generated with pixel-perfect accuracy. We show in fig. 11 a T-SNE visualization of the
learned latent space and examples of generation on the training set using the trained checkpoint.

We observe a surprisingly high generalization to the evaluation dataset, even though it is known to
include significantly more complex programs than the training set. The generalization performance
sees similar increases when scaling gradient steps with performance increasing more than 3x between
Mean and GA 200 inference. Since the ARC test set is private, we evaluated only the highest-
performing inference method according to the evaluation set and scored 3.00% on the test dataset
(leaderboard score). Given that there cannot be any data leakage from the evaluation dataset, this
suggests that the generalization gap between training and testing could be slightly higher than that of
training and evaluation. Importantly we highlight that figure 10 clearly shows that training is far from
convergence, therefore we can expect both higher training accuracy and likely generalization with
higher compute.

6 Conclusion

In this work, we introduce Latent Program Network (LPN), a novel approach to inductive program
synthesis that leverages continuous latent space representations to enable efficient search and test-
time adaptation in the space of latent programs. Unlike previous methods, LPN directly integrates
the ability for test-time adaptation into the architecture, rather than relying on extensive sampling
from the model. Our results demonstrate that, for program synthesis tasks over grids, LPN can use
test-time adaptation to boost performance significantly by refining representations in the latent space.
Specifically, we find that gradient-based search is the most efficient adaptation method for LPN, with
step size and number of steps being important hyper-parameters for performance. Additionally, this
adaptive approach enables LPN to generalize beyond its training distribution, which is particularly
challenging for methods lacking test-time adaptation. On the ARC-AGI challenge, we show that
LPN can generalize from the training set to the evaluation set without additional synthetic datasets,
relying solely on test-time adaptation. We believe this to be a scalable approach as an alternative to
methods that improve neural architecture performance simply by expanding the training set to reduce
the generalization gap required. Our findings also indicate that LPN scales effectively with increased
compute, suggesting that, with additional resources, LPN would achieve higher performance on the
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ARC-AGI evaluation dataset and subsequently the test set. Lastly, we show that our LPN architecture
for ARC-AGI outperforms previous vision transformer methods Li et al. [2024b] that struggled
to overfit to single ARC tasks, conclusively showing that such grid-based program tasks are not
a challenge for existing architectures. In particular, we train a network from scratch capable of
executing over 180 programs on the arc training dataset. Therefore, future work should focus on
other challenges that limit performance.

Limitations and Future Work Despite its strengths, LPN faces limitations. An initial limitation
of our work is that, despite access to TPUs for training, our main ARC-AGI training run has not
been trained to convergence yet. Training networks from scratch has the downside of long training
times, so future work would need to scale compute to understand the convergence properties of
LPN when training on RE-ARC, both in training time and parameter counts. Secondly, while we
show that gradient ascent can be used to boost test time performance to a significant extent, gradient
ascent as an optimization method may encounter local optima, which could restrict LPN’s capacity to
find the best latent solution. Future work could investigate different optimization procedures in the
latent space to overcome this challenge, such as alternatives to initializing search and procedures for
updating latents according to the gradient. Hybrid approaches combining evolution strategies (e.g.,
COMPASS [Chalumeau et al., 2023]) with gradient-based methods might improve search efficacy
in future iterations. Another limitation is the challenge of representing complex, discrete programs
within a continuous latent space, which may restrict expressivity for certain tasks or compositional
generalization Shi et al. [2023]. Future work could explore discrete program representations, though
this would require addressing the complexities of discrete space search.

In summary, LPN represents a step forward in adaptive program synthesis, demonstrating effective
test-time adaptation, scalability, and potential for generalization. This work underscores the value of
structured search and adaptive latent representations in advancing program synthesis capabilities.
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A Experiments

Figure 11: T-SNE of different program embeddings from pairs sampled from the re-arc generators.
IDs correspond to different generators and hence represent specific training tasks.

Figure 11 shows a T-SNE visualization of the latent space of input-output pairs sampled from the
re-arc generators. Tasks that are well mastered by the decoder seem to be clustered in the latent
space while tasks that aren’t learned yet are part of a common bag of programs yet to be learned.
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Figure 12: Random examples from the ARC-AGI training set with positive and negative cases. For
each task, the top row contains the inputs, the middle row the outputs, and the bottom row is the
model’s prediction.
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Figure 13: Gradient ascent trajectory as shown in figure 1.

Figure 14: Small pattern task
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Figure 15: Log prob maximization dur-
ing latent search

Figure 16: Gradient ascent trajectory detailed
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Figure 17: 2D latent space of patterns, zoomed in version of figure 9.
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